Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(10): 5829-5843, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32654317

RESUMO

Climate change has amplified eruptive bark beetle outbreaks over recent decades, including spruce beetle (Dendroctonus rufipennis). However, for projecting future bark beetle dynamics there is a critical lack of evidence to differentiate how outbreaks have been promoted by direct effects of warmer temperatures on beetle life cycles versus indirect effects of drought on host susceptibility. To diagnose whether drought-induced host-weakening was important to beetle attack success we used an iso-demographic approach in Engelmann spruce (Picea engelmannii) forests that experienced widespread mortality caused by spruce beetle outbreaks in the 1990s, during a prolonged drought across the central and southern Rocky Mountain region. We determined tree death date demography during this outbreak to differentiate early- and late-dying trees in stands distributed across a landscape within this larger regional mortality event. To directly test for a role of drought stress during outbreak initiation we determined whether early-dying trees had greater sensitivity of tree-ring carbon isotope discrimination (∆13 C) to drought compared to late-dying trees. Rather, evidence indicated the abundance and size of host trees may have modified ∆13 C responses to drought. ∆13 C sensitivity to drought did not differ among early- versus late-dying trees, which runs contrary to previously proposed links between spruce beetle outbreaks and drought. Overall, our results provide strong support for the view that irruptive spruce beetle outbreaks across North America have primarily been driven by warming-amplified beetle life cycles whereas drought-weakened host defenses appear to have been a distant secondary driver of these major disturbance events.


Assuntos
Besouros , Picea , Animais , Demografia , Surtos de Doenças , Secas , América do Norte , Temperatura , Árvores
2.
Am J Bot ; 107(4): 628-638, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32236958

RESUMO

PREMISE: Determining which traits characterize strategies of coexisting species is important to developing trait-based models of plant communities. First, global dimensions may not exist locally. Second, the degree to which traits and trait spectra constitute independent dimensions of functional variation at various scales continues to be refined. Finally, traits may be associated with existing categorical groupings. METHODS: We assessed trait integration and differentiation across 57 forest understory plant species in Douglas-fir forests of western Oregon, United States. We combined measurements for a range of traits with literature-based estimates of seed mass and species groupings. We used network analysis and nonmetric multidimensional scaling ordination (NMS) to determine the degree of integration. RESULTS: We observed a strong leaf economics spectrum (LES) integrated with stem but not root traits. However, stem traits and intrinsic water-use efficiency integrated LES and root traits. Network analyses indicated a modest grouping of a priori trait dimensions. NMS indicated that multivariate differences among species were related primarily to (1) rooting depth and plant height vs. specific root length, (2) the LES, and (3) leaf size vs. seed mass. These differences were related to species groupings associated with growth and life form, leaf lifespan and seed dispersal mechanisms. CONCLUSIONS: The strategies of coexisting understory plant species could not be reduced to a single dimension. Yet, species can be characterized efficiently and effectively for trait-based studies of plant communities by measuring four common traits: plant height, specific leaf area, leaf size, and seed mass.


Assuntos
Florestas , Plantas , Oregon , Fenótipo , Folhas de Planta
3.
Ecol Appl ; 23(6): 1297-310, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24147403

RESUMO

Because forest ecosystems have the capacity to store large quantities of carbon (C), there is interest in managing forests to mitigate elevated CO2 concentrations and associated effects on the global climate. However, some mitigation techniques may contrast with management strategies for other goals, such as maintaining and restoring biodiversity. Forest thinning reduces C storage in the overstory and recruitment of detrital C. These C stores can affect environmental conditions and resource availability in the understory, driving patterns in the distribution of early and late-seral species. We examined the effects of replicated (N = 7) thinning experiments on aboveground C and understory vascular plant species richness, and we contrasted relationships between aboveground C and early- vs. late-seral species richness. Finally, we used structural equation modeling (SEM) to examine relationships among early- and late-seral species richness and live and detrital aboveground C stores. Six years following thinning, aboveground C was greater in the high-density treatment and untreated control than in moderate- (MD) and variable-density (VD) treatments as a result of reductions in live overstory C. In contrast, all thinning treatments increased species richness relative to controls. Between the growing seasons of years 6 and 11 following treatments, the live overstory C increment tended to increase with residual density, while richness decreased in MD and VD treatments. The richness of early-seral species was negatively related to aboveground C in MD and VD, while late-seral species richness was positively (albeit weakly) related to aboveground C. Structural equation modeling analysis revealed strong negative effects of live overstory C on early-seral species richness balanced against weaker positive effects on late-seral species richness, as well as positive effects of detrital C stocks. A trade-off between carbon and plant species richness thus emerges as a net result of these relationships among species traits, thinning treatments, and live and detrital C storage. Integrating C storage with traditional conservation objectives may require managing this trade-off within stands and landscapes (e.g., maintain early-seral habitat and species within dense, C-rich forests and, conversely, live and detrital C stores in early-seral habitats) or separating these goals across scales and species groupings.


Assuntos
Biodiversidade , Carbono/metabolismo , Árvores/fisiologia , Monitoramento Ambiental , Oregon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...